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This paper extends the gas-kinetic BGK-type scheme to low Mach number flows,
and thus shows that incompressible flow solutions are accurately obtained from the
BGK scheme in the low Mach number limit. The influence of boundary conditions,
internal molecular degrees of freedomK , and the flow Mach numberM on the ac-
curacy of the solutions of incompressible or nearly incompressible flow problems is
quantitatively evaluated. The gas-kinetic scheme is tested carefully in two numer-
ical examples, namely, the cavity flow problem and the flow passing a backward
facing step problem. For the cavity flow problem, the numerical results from the gas-
kinetic scheme under different Reynolds numbers compare well with Ghia’s data.
For the backward step problem, the numerical results are compared accurately with
previously published experimental data.c© 1999 Academic Press

Key Words:low-speed flow; kinetic scheme; incompressible Navier–Stokes equa-
tions.

1. INTRODUCTION

Great progress has been achieved in the field of computational fluid dynamics of incom-
pressible flows in the past few decades [4, 7]. Despite this success, there remain two main
challenges in the numerical solutions of incompressible fluid flows. First, the incompress-
ible flow assumption eliminates the unsteady term from the continuity equation and reduces
the mass conservation equation to a divergence free velocity field. Therefore, the absence of
density from the incompressible fluid flow equations decouples the continuity equation from
the momentum and energy equations. Hence, the divergence free velocity field becomes
an implicit condition for solving the momentum and energy equations. The enforcement
of the divergence free velocity field condition requires the solution of Poisson’s equation
for the pressure field. However, for complicated geometry, the Poisson solver is the most
time consuming part in the whole flow calculations. The second challenge in the solution of
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incompressible fluid flow equations relates to the proper choice of intermediate boundary
conditions [6]. In fact, Ref. [6] provides excellent insight into the problems associated with
some intermediate boundary conditions and shows which intermediate boundary is optimal
for viscous incompressible flows.

Conceptually, it seems plausible that the problems associated with the solution of the
Poisson equation and the boundary conditions in incompressible flows can be avoided
by applying compressible flow codes to problems where flow Mach number tends to zero.
However, the extention of a compressible code to incompressible limit is not straightforward
and can be problematic. For example, the large disparity between the speed of acoustic waves
and the speed of convective waves which occurs whenever the flow Mach number approaches
zero causes inaccuracy and stability problems for conventional flux-splitting methods that
are based on the exact or approximate Riemann solvers, such as Roe, van Leer, Osher, and
AUSM splitting [10]. In fact, singularities exist in all these flux splitting methods when
M→ 0. This is not surprising given that a proper formulation of a numerical technique for
the compressible flow equations requires an upwinding procedure, thus implying a finite
wave speed (i.e.,M 6= 0).

A possible approach to dealing with the problem of singularity encountered when ap-
plying a compressible code to model a small Mach number flow is to redefine the “repre-
sentative” sound speedc when the flow Mach number becomes smaller than a specified
threshold (e.g., 0.3) [15]. Some approaches are based on discarding the energy equation
for the compressible fluid [5], and the gas is considered as barotropic, such as those with
equal temperature. In recent years, the lattice Boltzmann method has been successfully
applied to incompressible, isothermal flows [8]. However, due to the specific discretization
of particle velocities in the phase space, the lattice Boltzmann method still has difficulties
in compressible flow limit and maintaining the correct energy equation [2].

The development of gas-kinetic schemes has attracted much attention in recent years.
These schemes are based on the approximate collisional Boltzmann equation, such as
the BGK model [1]. The resulting numerical models are often referred to as collisional
BGK schemes for the compressible Euler and Navier–Stokes equations [14]. A complete
description of the BGK scheme can be found in a recent lecture note [12]. Unlike upwind
schemes, such as those based on Riemann solvers, the BGK method is basically solving
the viscous equations, where the dissipation is controlled by the particle collision time. The
objective of this paper is to simplify the original BGK method in the smooth flow region
and extend it to the low Mach number flows.

The paper is organized as follows. In Section 1, the BGK scheme for the low-speed flow is
presented. In Section 2, the scheme is applied to the 2D cavity flow calculation and the results
are compared with Ghia’s data. The agreement between both results is extraordinary. The
origin of the errors from the boundary condition, the molecule’s internal degree of freedom,
and the Mach numberM are presented in detail in Section 3. In Section 4, the kinetic
scheme is applied to the flow over a backward facing step problem. Numerical examples
validate the current scheme for the solutions of low-speed flow. The last section provides
the conclusions.

2. BGK SCHEME IN LOW-SPEED LIMIT

The BGK model in two-dimensional case is

ft + u fx + v fy = g− f

τ
, (1)
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where f is the real gas distribution function andg is the equilibrium state approached byf .
Both f andg are functions of spacex, y; time t ; particle velocityu, v; and internal degrees
of freedomξ . The particle collision timeτ is related to viscosity coefficient, which depends
on the local macroscopic flow variables, such as temperature.

The equilibrium stateg in the 2D BGK model has the form

g = ρ
(
λ

π

)(K+2)/2

e−λ[(u−U )2+(v−V)2+ξ2], (2)

whereρ is density,U andV are the macroscopic velocities inx and y directions, andλ
is a function of temperatureλ=m/2kT. ξ is a vector inK dimensions (not necessarily an
integer) andξ2 is

ξ2 = ξ2
1 + ξ2

2 + · · · + ξ2
K .

In D dimensions,K is related to the specific heat ratioγ through the relation [12]

γ = K + D + 2

K + D
,

whereD is the number of dimensions.
The connection between massρ, momentumρU (=m),ρV(= n), and energyρε densities

and the distribution functionf is

W =


ρ

ρU

ρV
ρε

 =

ρ

m
n
ρε

 = ∫ ψα f du dv dξ, α = 1, 2, 3, 4, (3)

wheredξ = dξ1 dξ2 · · ·dξK , ψα is the vector

ψα =
(

1, u, v,
1

2
(u2+ v2+ ξ2)

)T

, (4)

anddu dv dξ is the volume element in the phase space. Since mass, momentum, and energy
are conserved during particle collisions,f andg must satisfy the conservation constraint∫

(g− f )ψα du dv dξ = 0, α = 1, 2, 3, 4, (5)

at any point in space and time. The fluxes for the corresponding macroscopic variables in
thex-direction are

F(W) =


Fρ

Fm

Fn

Fρε

 =
∫

uψα f du dv dξ. (6)

From Eq. (1), the compressible Navier–Stokes equations can be derived, where the shear
stress tensor can be expressed as

σi j = η
[(
∂Ui

∂xj
+ ∂U j

∂xi
− δi j

∂Uk

∂xk

)
+ K

K + 2
δi j
∂Uk

∂xk

]
, (7)
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where dynamic viscosity coefficient is

η = τp,

and the second viscosity coefficient becomes

ς = K

K + 2
τp.

In the above equations,p is the local fluid pressure with the relationp= ρ/2λ. The second
viscosity coefficient is solely related to the internal degree of freedom through the com-
pressibility of the fluid, which can be totally eliminated by the choice ofK = 0, which
corresponds toγ = 2 in the 2D case.

In order to develop a finite volume gas-kinetic scheme, take moments ofψα in Eq. (1)
and integrate them with respect todu dv dξ in phase space,dx dy in a numerical cell
[xi−1/2, j , xi+1/2, j ]× [yi, j−1/2, yi, j+1/2], and timedt in a time step [tn, tn+1],∫

( ft + u fx + v fy)ψα du dv dξ dx dy dt=
∫

g− f

τ
ψα du dv dξ dx dy dt;

with conditions (3), (5), and (6), we can get

Wn+1
i, j −Wn

i, j =
1

1Si, j

k=4∑
k=1

∫ 1t

0

EFk · Elk dt, (8)

where1t = tn+1− tn, and EF is the flux across cell interfaces, which can be obtained from
the integration of the particle distribution function.1Si, j is the area of the numerical cell
(i, j ) and|El k| the length of the cell interface with the normal directionEk.

Since the BGK model is solved in the current paper by using a directional splitting
scheme, in what follows we only present the numerical discretization for the fluxes in the
x-direction; a similar formula can be found in they-direction. In thex-direction, the BGK
model can be reduced to

ft + u fx = g− f

τ
. (9)

For subsonic flow without shocks, the general solution off for the above equation at the
cell interfacexi+1/2 and timet can be simplified as [11]

f (xi+1/2, t, u, v, ξ) = 1

τ

∫ t

−∞
g(x′, t ′, u, v, ξ)e−(t−t ′)/τ dt′, (10)

wherex′ = xi+1/2− u(t − t ′) is the trajectory of a particle motion. Generally, the equilibrium
stateg around the cell interfacexi+1/2 at the beginning of each time stept = 0 is assumed
to be

g(x, t, u, v, ξ) = g0(1+ a(x − xi+1/2)+ At), (11)

whereg0 is the local Maxwellian located at the cell interface,

g0 = ρ0

(
λ0

π

)(K+2)/2

e−λ0[(u−U0)
2+(v−V0)

2+ξ2] . (12)
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The dependence ofa, A in Eq. (11) on the particle velocities can be obtained from the
Taylor expansion of a Maxwellian and have the forms of

a = a1+ a2u+ a3v + a4
1

2
(u2+ v2+ ξ2) = aαψα,

A = A1+ A2u+ A3v + A4
1

2
(u2+ v2+ ξ2) = Aαψα,

where all coefficients ofa1,a2, . . . , A4 are local constants.
For the low-speed flow, at the beginning of each time stept = 0, the values of macroscopic

variables on the cell interfaces and their slopes in the normal direction can be calculated
from the discretized initial dataWi . In the present paper, a third-order accurate interpolation
scheme is used, and the macroscopic variables at the cell interface and their slopes are
constructed as

Wi+1/2 = 7

12
(Wi +Wi+1)− 1

12
(Wi−1+Wi+2), (13)(

dW

dx

)
i+1/2

=
(

5

4
(Wi+1−Wi )− 1

12
(Wi+2−Wi−1)

)/
1x, (14)

where1x is the cell size. With the above macroscopic distributions, the microscopic gas
distribution functiong at timet = 0 can be determined:

∫
ψαg0 du dv dξ = Wi+1/2 =


ρ

ρU

ρV
ρε


i+1/2

and ∫
aψαg0 du dv dξ =

(
dW

dx

)
i+1/2

.

The parameters in the Maxwellian distributionsg0 in Eq. (12) are


ρ0

U0

V0

λ0

 =


ρ

U
V

(K + 2)ρ
4(ρε− 1

2 (m
2+ n2)/ρ)


i+1/2

. (15)

After determiningg0 in the above equations, we can finda from the slopes of macroscopic
variables across a cell interface

1

ρ0

(
dW

dx

)
i+1/2

≡


1ρ

1m
1n
1ρε

 = Mαβ


a1

a2

a3

a4

 = Mαβaβ, (16)
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where the matrixMαβ = 1/ρ0
∫

g0ψαψβ du dv dξ is

Mαβ =


1 U0 V0 B1

U0 U2
0 + 1/2λ0 U0V0 B2

V0 U0V0 V2
0 + 1/2λ0 B3

B1 B2 B3 B4

 , (17)

and

B1 = 1

2

(
U2

0 + V2
0 + (K + 2)/2λ0

)
,

B2 = 1

2

(
U3

0 + V2
0 U0+ (K + 4)U0/2λ0

)
,

B3 = 1

2

(
V3

0 +U2
0 V0+ (K + 4)V0/2λ0

)
,

and

B4 = 1

4

((
U2

0 + V2
0

)2+ (K + 4)
(
U2

0 + V2
0

)/
λ0+ (K 2+ 6K + 8)

/
4λ2

0

)
.

The above matrix can be easily inverted, and the solutions fora in Eq. (16) can be expressed
as

a4 = 4λ2
0

K + 2
(21ε − 2U01U − 2V01V),

a3 = 2λ0

(
1V − V0

2λ0
a4

)
,

a2 = 2λ0

(
1U − U0

2λ0
a4

)
,

a1 = 1

ρ0
1ρ −U0a2− V0a3− 1

2

(
U2

0 + V2
0 +

K + 2

2λ0

)
a4,

where

1U = (1m−U01ρ),

1V = (1n− V01ρ),

1ε =
(
1(ρε)− 1

2

(
U2

0 + V2
0 +

K + 2

2λ0

)
1ρ

)
.

After substituting Eq. (11) into Eq. (10), the final gas distribution function at a cell
interface is

f (xi+1/2, t, u, v, ξ) = g0(1− τua+ (t − τ)A); (18)

the only unknown in the above equation isA. Since

g(xi+1/2, t, u, ξ) = g0(1+ At),
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and with the compatibility condition∫
ψα( f − g) du dv dξ = 0,

along the timet and atx= xi+1/2, A can be uniquely determined from∫
(ua+ A)ψαg0 du dv dξ = 0,

which gives

Mαβ Aβ = − 1

ρ0

∫
uag0ψα du dv dξ, (19)

whereMαβ is given in Eq. (17), and the right-hand side in the above equation is known.
Therefore, the above equation can be solved to obtainAβ = (A1, A2, A3, A4)

T as that
solving Eq. (16). The integrating moments of Maxwellian distribution can be found in
the Appendix.

Finally, the time-dependent numerical fluxes in thex-direction across the cell interface
can be computed as

Fρ
Fm

Fn

Fρε


i+1/2

=
∫

u


1
u
v

1
2(u

2+ v2+ ξ2)

g0(1+ τau+ (t − τ)A) du dv dξ. (20)

By integrating the above equation to the whole time step1t , we get the total mass, mo-
mentum, and energy transport. Again, the moments of a Maxwellian can be found in the
Appendix. The collision timeτ in the above flux functions is related to the viscosity coef-
ficientν through the relation

ν = τp

ρ
.

For any physical problem, with given Reynolds number Re,

Re= U L

ν
= U Lρ

τp
,

we can have

τ = 2λU L

Re
,

whereλ takes the valueλ0 in Eq. (15) and the relationp= ρ/2λ has been used.

Remark. The time step1t used in the above scheme is based on the CFL condition and
the CFL number taken is around 0.65. For any practical simulations, the ratio between1t
and the particle collision timeτ is about1t/τ ∼ 10–100. Mathematically the scheme can
be used in the limit of1t/τ ∼ 1. However, physically the limit1t ∼ τ implies rarefied gas
flow, and the assumption of Maxwellian and the expansion of Maxwellian in the current
scheme are not valid.
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3. SIMULATION OF CAVITY FLOW

In this section, the 2-D viscous flow in a cavity is simulated. In this problem, the fluid is
bounded by a square and is driven by a uniform translation of the top. The cavity case shows
rich vortex phenomena at many scales depending on the Reynolds number Re, and there
are abundant papers in the literature to study the flow configuration. The cavity problem
is an ideal test case for numerical methods devised to solve the Navier–Stokes equations
because the solution of this problem displays a well-studied flow pattern.

The lack of an exact solution to the cavity flow problem means that an existing accurate and
comprehensive numerical solution for this problem can be used as a benchmark to evaluate
the results obtained by the proposed BGK method. Ghiaet al. [7] obtained numerical
solutions up to Re= 10,000 with 257× 257 grid points by using a vorticity-stream function
formulation. To date, this work is probably the most comprehensive study of the cavity flow.
Therefore, the simulation results of the cavity problem by the BGK model are compared
to Ghia’s data. The effects of the compressibility, boundary conditions, Mach numberM ,
internal degree of freedomK , Reynolds number Re, and grid size on the results of the
BGK scheme are tested and analyzed in this section. In addition, the optimum choice for
the parametersM , K , and Re are suggested and physical explanations for this choice are
provided.

3.1. Description of the Numerical Results

In the present simulation, Cartesian coordinates are used. The top boundary moves from
left to right with velocityU . A uniform mesh of 128× 128 cells is used for the calculation for
Re= 100, 400, 1000, 2000, 3200, and 5000, and a mesh of 256× 256 is used for Re= 7500
and 10,000, respectively. The Reynolds number is defined as Re=U L/ν, whereL is length
of cavity side which is equal to 1 in this case andν is kinematic viscosityν= η/ρ.

In the present computation, the velocity field att = 0 (i.e., initial condition) is zero
everywhere inside the cavity. To check the convergence of the BGK solution to steady
state, the velocity fields at different output timest are compared. It is found that there is
little differences between the results att = 30 andt = 40 when Re≤ 5000. However, as the
Reynolds number is increased beyond 5000 (i.e., Re≥ 5000) the simulation timet required
for convergence is more than 50. The computation indicates that the increase oft with Re
is rapid. When ReÀ 5000 and with a mesh of 128× 128 cells, the convergence to steady
state is either slow or simply not achievable. To resolve this problem, a smaller mesh size
is required. For instance, the computation shows that by increasing the number of cells to
256× 256, convergence to steady state is achieved for all Re≤ 10,000. To test the influence
of the cell size on the accuracy of the converged solution, the results obtained with 128× 128
and 256× 256 are compared for Re= 1000,K = 0, andM = 0.15. This comparison shows
little difference in this case (see Tables 2 and 3).

To obtain vorticities from the solution of velocity field at output time, a standard second-
order central difference scheme is used to discretize the expression

ω = ∂V

∂x
− ∂U
∂y
.

Then, the stream function is obtained by solving Poisson’s equation

1ψ = −ω.
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FIG. 1. Streamlines for the calculations withK = 0,M = 0.15, and (a) Re= 100; (b) Re= 400; (c) Re= 1000;
(d) Re= 2000; (e) Re= 3200; (f) Re= 5000; (g) Re= 7500; (h) Re= 10,000.

The results forK = 0 and M = 0.15 are shown in Figures 1, 2, 3, and in the Tables.
Figure 1 shows streamlines for different Reynolds numbers. It is apparent that the flow
structure is in good agreement with that of Ghia. The effect of the Reynolds number on
the flow pattern and the structure of the steady recirculating eddies in the cavity are clearly
observed. Figure 2 shows the vorticity distribution inside the cavity. It is obvious that the
scale of the central main vortex increases with the Reynolds number; at the same time the
magnitude of the vorticity in the central region becomes larger. In Table 1, the locations of
the vortex center are listed and compared with Ghia’s simulation results. The relative error
between the two solutions is less than 5%. The horizontal and vertical components of the
U andV velocities along their respective center line are displayed in Fig. 3 for different
values of Reynolds number, where the circles represent Ghia’s data and the solid lines are
the results obtained from the current scheme. Tables 4 and 5 list the detailed numerical data
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TABLE 1

Locations of Vortex Center under Different Re Number, Where

M = 0.15 andK = 0 Are Used in the Simulation

Re: 100 400 1,000 2,000 3,200 5,000 7,500 10,000

x (Ghia’s): 0.62 0.56 0.54 — — 0.52 0.51 0.51
x (present): 0.62 0.56 0.54 0.53 0.52 0.52 0.52 0.51

y (Ghia’s): 0.73 0.61 0.56 — — 0.54 0.54 0.51
y (present): 0.74 0.62 0.57 0.57 0.55 0.54 0.53 0.52

FIG. 2. Vorticity distributions for the calculations withK = 0,M = 0.15, and (a) Re= 100; (b) Re= 400;
(c) Re= 1000; (d) Re= 2000; (e) Re= 3200; (f) Re= 5000; (g) Re= 7500; (h) Re= 10,000.
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FIG. 3. U (left) andV (right) velocity distributions along vertical and horizontal lines for the calculations with
K = 0,M = 0.15, and (a) Re= 100; (b) Re= 400; (c) Re= 1000; (d) Re= 2000; (e) Re= 3200; (f) Re= 5000;
(g) Re= 7500; (h) Re= 10,000. (s) Ghia’s data; (—) BGK results.
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TABLE 2

Distribution of U-Velocity along Vertical Central Line

with Re = 1000,M = 0.15,K = 0

y Ghia’s U (128× 128) U (258× 258)

0.00000 0.00000 0.00000 0.00000
0.05469 −0.18109 −0.17707 −0.18111
0.06250 −0.20196 −0.19798 −0.20220
0.07031 −0.22220 −0.21849 −0.22279
0.10156 −0.29730 −0.29583 −0.30026
0.17188 −0.38289 −0.38469 −0.38755
0.28125 −0.27805 −0.27824 −0.27920
0.45313 −0.10648 −0.10709 −0.10742
0.50000 −0.06080 −0.06142 −0.06150
0.61719 0.05702 0.05657 0.05706
0.73438 0.18719 0.18684 0.18809
0.85156 0.33304 0.33331 0.33591
0.95313 0.46604 0.46751 0.47056
0.96094 0.51117 0.51237 0.51528
0.96875 0.57492 0.57579 0.57855
0.97656 0.65928 0.65963 0.66252
1.00000 1.00000 1.00000 1.00000

TABLE 3

Distribution of V-Velocity along Horizontal Central Line

with Re = 1000,M = 0.15,K = 0

x Ghia’s V (128× 128) V (258× 258)

0.0000 0.00000 0.00000 0.00000
0.0625 0.27485 0.27679 0.27980
0.0703 0.29012 0.29221 0.29532
0.0781 0.30353 0.30572 0.30896
0.0938 0.32627 0.32872 0.33202
0.1563 0.37095 0.37238 0.37555
0.2266 0.33075 0.32986 0.33235
0.2344 0.32235 0.32136 0.32374
0.5000 0.02526 0.02470 0.02527
0.8047 −0.31966 −0.31876 −0.31977
0.8594 −0.42665 −0.42620 −0.42653
0.9063 −0.51550 −0.51846 −0.52447
0.9453 −0.39188 −0.39433 −0.40618
0.9531 −0.33714 −0.33916 −0.35108
0.9609 −0.27669 −0.27879 −0.28961
0.9688 −0.21388 −0.21512 −0.22423
1.0000 0.00000 0.00000 0.00000
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TABLE 4

Distribution of U-Velocity along Vertical Central Line with M = 0.15, K = 0

Re= 100 Re= 400 Re= 1,000
Re= 2,000

y Ghias Present Ghias Present Ghias Present Present

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0547 −0.0372 −0.0373 −0.0819 −0.0813 −0.1811 −0.1771 −0.2712
0.0625 −0.0419 −0.0420 −0.0927 −0.0921 −0.2020 −0.1980 −0.2982
0.0703 −0.0477 −0.0467 −0.1034 −0.1028 −0.2222 −0.2185 −0.3232
0.1016 −0.0643 −0.0645 −0.1461 −0.1456 −0.2973 −0.2958 −0.3914
0.1719 −0.1015 −0.1020 −0.2430 −0.2432 −0.3829 −0.3847 −0.3530
0.2812 −0.1566 −0.1580 −0.3273 −0.3275 −0.2781 −0.2782 −0.2384
0.4531 −0.2109 −0.2131 −0.1712 −0.1705 −0.1065 −0.1071 −0.0834
0.5000 −0.2058 −0.2077 −0.1148 −0.1143 −0.0608 −0.0614 −0.0414
0.6172 −0.1364 −0.1367 0.0214 0.0216 0.0570 0.0566 0.0668
0.7344 0.0033 0.0053 0.1626 0.1625 0.1872 0.1868 0.1862
0.8516 0.2315 0.2349 0.2909 0.2905 0.3330 0.3333 0.3300
0.9531 0.6872 0.6896 0.5589 0.5591 0.4660 0.4675 0.4303
0.9609 0.7372 0.7392 0.6176 0.6176 0.5112 0.5124 0.4504
0.9688 0.7887 0.7903 0.6844 0.6844 0.5749 0.5758 0.4914
0.9766 0.8412 0.8424 0.7584 0.7582 0.6593 0.6596 0.5647

Re= 3,200 Re= 5,000 Re= 7,500 Re= 10,000

y Ghias Present Ghias Present Ghias Present Ghias Present

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0547 −0.3241 −0.3390 −0.4117 −0.4089 −0.4315 −0.4336 −0.4274 −0.4539
0.0625 −0.3534 −0.3692 −0.4290 −0.4270 −0.4359 −0.4343 −0.4254 −0.4617
0.0703 −0.3783 −0.3923 −0.4364 −0.4348 −0.4302 −0.4271 −0.4166 −0.4502
0.1016 −0.4193 −0.4174 −0.4044 −0.4014 −0.3832 −0.3794 −0.3800 −0.3778
0.1719 −0.3432 −0.3392 −0.3305 −0.3135 −0.3239 −0.3198 −0.3271 −0.2942
0.2812 −0.2443 −0.2357 −0.2286 −0.2065 −0.2318 −0.2189 −0.2319 −0.1834
0.4531 −0.0664 −0.0711 −0.0740 −0.0620 −0.0750 −0.0634 −0.0754 −0.0543
0.5000 −0.0427 −0.0273 −0.0304 −0.0260 −0.0380 −0.0254 −0.0311 −0.0211
0.6172 0.0716 0.0800 0.0818 0.0670 0.0834 0.0719 0.0834 0.0650
0.7344 0.1979 0.1920 0.2009 0.1768 0.2059 0.1924 0.2067 0.1623
0.8516 0.3468 0.3277 0.3356 0.3189 0.3423 0.3378 0.3464 0.3045
0.9531 0.4610 0.4385 0.4604 0.4560 0.4717 0.4698 0.4780 0.4634
0.9609 0.4655 0.4437 0.4599 0.4600 0.4732 0.4711 0.4807 0.4799
0.9688 0.4830 0.4614 0.4612 0.4614 0.4705 0.4708 0.4778 0.4721
0.9766 0.5324 0.5110 0.4822 0.4819 0.4724 0.4734 0.4722 0.4723
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

for U andV velocities. According to Tables 4 and 5, the relative difference in the peak
velocity between the BGK solution and Ghia’s results is less than 5%.

3.2. Effect of Boundary Condition

Correct simulation of low-speed flow requires the implementation of appropriate bound-
ary conditions. For incompressible Navier–Stokes equations, the energy equation is decou-
pled from continuity and momentum equations. In this case, the adherent condition (no slip)
is used for the velocity boundary condition. Then, for pressure, Poisson’s equation with the
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TABLE 5

Distribution of V-Velocity along Horizontal Central Line with K = 0, M = 0.15

Re= 100 Re= 400 Re= 1,000
Re= 2,000

x Ghias Present Ghias Present Ghias Present Present

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0625 0.0923 0.0932 0.1836 0.1830 0.2749 0.2768 0.3332
0.0703 0.1009 0.1019 0.1971 0.1965 0.2901 0.2922 0.3487
0.0781 0.1089 0.1100 0.2092 0.2086 0.3035 0.3057 0.3620
0.0938 0.1232 0.1244 0.2297 0.2291 0.3263 0.3286 0.3819
0.1563 0.1608 0.1625 0.2812 0.2810 0.3710 0.3724 0.3741
0.2266 0.1751 0.1773 0.3020 0.3018 0.3307 0.3300 0.2926
0.2344 0.1753 0.1775 0.3017 0.3015 0.3223 0.3214 0.2838
0.5000 0.0545 0.0561 0.0519 0.0513 0.0253 0.0247 0.0166
0.8047 −0.2453 −0.2517 −0.3860 −0.3861 −0.3197 −0.3188 −0.3011
0.8594 −0.2245 −0.2309 −0.4499 −0.4501 −0.4266 −0.4262 −0.3653
0.9063 −0.1691 −0.1743 −0.3383 −0.3821 −0.5155 −0.5185 −0.4768
0.9453 −0.1031 −0.1065 −0.2285 −0.2278 −0.3919 −0.3943 −0.5059
0.9531 −0.0886 −0.0915 −0.1925 −0.1918 −0.3371 −0.3392 −0.4620
0.9609 −0.0739 −0.0764 −0.1566 −0.1561 −0.2767 −0.2788 −0.3966
0.9688 −0.0591 −0.0609 −0.1215 −0.1207 −0.2139 −0.2151 −0.3137
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Re= 3,200 Re= 5,000 Re= 7,500 Re= 10,000

x Ghias Present Ghias Present Ghias Present Ghias Present

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0625 0.3956 0.3810 0.4245 0.4221 0.4398 0.4402 0.4398 0.4365
0.0703 0.4092 0.3951 0.4333 0.4316 0.4403 0.4427 0.4373 0.4413
0.0781 0.4191 0.4055 0.4365 0.4353 0.4356 0.4379 0.4312 0.4375
0.0938 0.4277 0.4155 0.4295 0.4278 0.4182 0.4169 0.4149 0.4165
0.1563 0.3712 0.3640 0.3537 0.3449 0.3506 0.3327 0.3507 0.3279
0.2266 0.2903 0.2871 0.2807 0.2616 0.2812 0.2627 0.2800 0.2416
0.2344 0.2819 0.2791 0.2728 0.2529 0.2735 0.2554 0.2722 0.2326
0.5000 0.0100 0.0083 0.0094 0.0068 0.0082 0.0136 0.0083 0.0065
0.8047 −0.3118 −0.3003 −0.3002 −0.2807 −0.3045 −0.2869 −0.3072 −0.2649
0.8594 −0.3740 −0.3615 −0.3621 −0.3512 −0.3621 −0.3454 −0.3674 −0.3351
0.9063 −0.4431 −0.4318 −0.4144 −0.4117 −0.4105 −0.4013 −0.4150 −0.3974
0.9453 −0.5405 −0.5369 −0.5288 −0.5320 −0.4859 −0.4850 −0.4586 −0.4515
0.9531 −0.5236 −0.5220 −0.5541 −0.5571 −0.5235 −0.5245 −0.4910 −0.4897
0.9609 −0.4742 −0.4747 −0.5507 −0.5520 −0.5522 −0.5544 −0.5299 −0.5336
0.9688 −0.3902 −0.3906 −0.4977 −0.4956 −0.5386 −0.5436 −0.5430 −0.5512
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

following boundary condition is usually solved,

∂p

∂n
= ν ∂

2Vn

∂n2
, (21)

wheren is the normal direction. For higher Reynolds numbers, the term on the right-hand
side in the above equation can be ignored.

For the BGK scheme, the compressible flow equations are solved. Therefore, it is neces-
sary to impose boundary conditions on velocity, density, and either pressure or temperature.
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FIG. 4. Results ofU andV velocities along vertical and horizontal lines by using isothermal and adiabatic
boundary conditions. (×) Ghia’s data; (—)dT/dn= 0; (- - -) T = constant.

In the calculations, we use

∂ρ

∂n
= 0,

for the density and adherence condition for the velocities at the wall. In addition, the fol-
lowing two temperature boundary conditions are tested in this paper:

isothermal:T = constant and adiabatic:
∂T

∂n
= 0.

Figure 4 plots the center line velocity distributions obtained from the BGK scheme by using
the isothermal and adiabatic boundary conditions, and compared with Ghia’s data. It is clear
that the results of the isothermal boundary condition are slightly different from the results
of the adiabatic boundary condition. The difference in the results can be explained from
an energy transfer point of view. Assuming that temperature is constant at the wall, the
BGK solution converges to a flow field whose steady-state temperature solution is constant
everywhere in the flow domain. Yet, the viscous shear stresses continue to generate heat even
when the flow reaches steady state. Hence, when the flow reaches its steady-state solution
under the isothermal condition, all the heat generated by viscous forces is transferred out
through the wall and the internal energy becomes constant. However, under the adiabatic
boundary condition, the heat generated in the process of reaching steady state by the viscous
forces in the upper surface is stored internally by the fluid. Hence, the temperature inside the
cavity in the adiabatic case is higher than that in the isothermal case. As a result, the sound
speed is higher in the formal case and it is equivalently more close to the incompressible
case. Therefore, it is not surprising that the adiabatic boundary condition gives better results.

3.3. Effect of Compressibility

Incompressible flow is the limit case of the compressible flow when the Mach number
M tends to zero. In the following, the effect of compressibility on the simulation results
with K = 0 and under different Mach numbers is investigated. The BGK results for different
Mach numbers and Ghia’s data are compared in Table 6. From this table, it is obvious that the
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TABLE 6

Comparison between Present Results (with DifferentM Number) and Ghia’s Data

Distribution ofU -velocity alone vertical central line

Y M= 0.30 M = 0.25 M = 0.20 M = 0.15 M = 0.10 M = 0.05 Ghia

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0547 −0.1788 −0.1784 −0.1779 −0.1771 −0.1767 −0.1747 −0.1811
0.0625 −0.1999 −0.1994 −0.1989 −0.1980 −0.1975 −0.1962 −0.2020
0.0703 −0.2204 −0.2199 −0.2194 −0.2185 −0.2180 −0.2176 −0.2222
0.1016 −0.2972 −0.2969 −0.2965 −0.2958 −0.2957 −0.2968 −0.2973
0.1719 −0.3834 −0.3840 −0.3844 −0.3847 −0.3849 −0.3828 −0.3829
0.2812 −0.2759 −0.2768 −0.2776 −0.2782 −0.2786 −0.2779 −0.2781
0.4531 −0.1058 −0.1063 −0.1067 −0.1071 −0.1076 −0.1058 −0.1065
0.5000 −0.0605 −0.0608 −0.0611 −0.0614 −0.0618 −0.0611 −0.0608
0.6172 0.0564 0.0565 0.0565 0.0566 0.0565 0.0560 0.0570
0.7344 0.1857 0.1862 0.1866 0.1868 0.1872 0.1871 0.1872
0.8516 0.3316 0.3324 0.3329 0.3333 0.3338 0.3329 0.3330
0.9531 0.4660 0.4668 0.4674 0.4675 0.4679 0.4705 0.4660
0.9609 0.5109 0.5116 0.5123 0.5124 0.5128 0.5150 0.5112
0.9688 0.5743 0.5750 0.5757 0.5758 0.5763 0.5785 0.5749
0.9766 0.6582 0.6589 0.6595 0.6596 0.6600 0.6623 0.6593
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Distribution ofV-velocity along horizontal central line

X M= 0.30 M = 0.25 M = 0.20 M = 0.15 M = 0.10 M = 0.05 Ghia

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0625 0.2763 0.2766 0.2768 0.2768 0.2794 0.2794 0.2749
0.0703 0.2918 0.2920 0.2922 0.2922 0.2948 0.2948 0.2901
0.0781 0.3053 0.3055 0.3057 0.3057 0.3086 0.3086 0.3035
0.0938 0.3282 0.3285 0.3287 0.3287 0.3323 0.3323 0.3263
0.1563 0.3711 0.3717 0.3722 0.3724 0.3738 0.3738 0.3710
0.2266 0.3279 0.3288 0.3295 0.3299 0.3290 0.3290 0.3307
0.2344 0.3193 0.3202 0.3209 0.3214 0.3209 0.3209 0.3223
0.5000 0.0243 0.0245 0.0246 0.0247 0.0226 0.0226 0.0253
0.8047 −0.3170 −0.3177 −0.3183 −0.3188 −0.3168 −0.3168 −0.3197
0.8594 −0.4245 −0.4252 −0.4258 −0.4262 −0.4249 −0.4249 −0.4266
0.9063 −0.5182 −0.5184 −0.5186 −0.5185 −0.5164 −0.5164 −0.5155
0.9453 −0.3972 −0.3966 −0.3957 −0.3943 −0.3909 −0.3909 −0.3919
0.9531 −0.3421 −0.3415 −0.3406 −0.3392 −0.3351 −0.3351 −0.3371
0.9609 −0.2816 −0.2810 −0.2801 −0.2788 −0.2736 −0.2736 −0.2767
0.9688 −0.2175 −0.2170 −0.2163 −0.2151 −0.2094 −0.2094 −0.2139
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BGK solution uniformly approaches Ghia’s solution asM→ 0. WhenM = 0.15, the relative
difference in the peak velocity between the BGK solution and Ghia’s results is less than 1%.

In the BGK scheme, another parameter that can influence the simulation results is the
value of internal degree freedomK . Theoretically, if the fliud is incompressible the internal
degree of freedom should takeK = 0 because there is no energy exchange between external
and internal molecular motion. Hence, the proper choice for the parameterK is zero (i.e.,
K = 0), which corresponds toγ = 2 and the coefficient of second viscosity becomes zero.
AlthoughK = 0 is the proper theoretical value, it is interesting to investigate the sensitivity
of the BGK solution to this parameter. Table 7 lists the simulation results for different values
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TABLE 7

Comparison between Present Results with DifferentK and Ghia’s Data

Distribution ofU -velocity along vertical central line

Y K= 2/5 K = 2/7 K = 1/5 K = 1/7 K = 1/10 K = 0 Ghia

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0547 −0.1717 −0.1772 −0.1771 −0.1771 −0.1771 −0.1771 −0.1811
0.0625 −0.1901 −0.1975 −0.1977 −0.1977 −0.1978 −0.1980 −0.2020
0.0703 −0.2076 −0.2173 −0.2176 −0.2178 −0.2181 −0.2185 −0.2222
0.1016 −0.2711 −0.2913 −0.2925 −0.2935 −0.2941 −0.2958 −0.2973
0.1719 −0.3472 −0.3769 −0.3790 −0.3805 −0.3817 −0.3847 −0.3829
0.2812 −0.2551 −0.2727 −0.2741 −0.2752 −0.2761 −0.2782 −0.2781
0.4531 −0.0938 −0.1039 −0.1047 −0.1054 −0.1059 −0.1071 −0.1065
0.5000 −0.0540 −0.0596 −0.0601 −0.0604 −0.0607 −0.0614 −0.0608
0.6172 0.0489 0.0548 0.0553 0.0556 0.0559 0.0566 0.0570
0.7344 0.1655 0.1820 0.1832 0.1841 0.1850 0.1868 0.1872
0.8516 0.2955 0.3252 0.3273 0.3288 0.3302 0.3333 0.3330
0.9531 0.4332 0.4606 0.4625 0.4638 0.4649 0.4675 0.4660
0.9609 0.4840 0.5064 0.5080 0.5092 0.5101 0.5124 0.5112
0.9688 0.5523 0.5708 0.5721 0.5731 0.5739 0.5758 0.5749
0.9766 0.6392 0.6557 0.6568 0.6575 0.6582 0.6596 0.6593
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Distribution ofV-velocity along horizontal central line

X K = 2/5 K = 2/7 K = 1/5 K = 1/7 K = 1/10 K = 0 Ghia

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0625 0.2683 0.2703 0.2721 0.2734 0.2743 0.2768 0.2749
0.0703 0.2832 0.2854 0.2872 0.2886 0.2896 0.2922 0.2901
0.0781 0.2962 0.2986 0.3005 0.3020 0.3031 0.3057 0.3035
0.0938 0.3184 0.3209 0.3230 0.3245 0.3257 0.3286 0.3263
0.1563 0.3616 0.3642 0.3664 0.3680 0.3693 0.3724 0.3710
0.2266 0.3232 0.3248 0.3261 0.3271 0.3280 0.3300 0.3307
0.2344 0.3150 0.3166 0.3177 0.3186 0.3195 0.3214 0.3223
0.5000 0.0251 0.0250 0.0249 0.0248 0.0248 0.0247 0.0253
0.8047 −0.3099 −0.3121 −0.3138 −0.3151 −0.3162 −0.3188 −0.3197
0.8594 −0.4193 −0.4211 −0.4224 −0.4234 −0.4243 −0.4262 −0.4266
0.9063 −0.5106 −0.5126 −0.5141 −0.5152 −0.5162 −0.5185 −0.5155
0.9453 −0.3878 −0.3894 −0.3906 −0.3916 −0.3925 −0.3943 −0.3919
0.9531 −0.3338 −0.3350 −0.3361 −0.3369 −0.3376 −0.3392 −0.3371
0.9609 −0.2746 −0.2756 −0.2764 −0.2770 −0.2776 −0.2788 −0.2767
0.9688 −0.2121 −0.2128 −0.2134 −0.2138 −0.2143 −0.2151 −0.2139
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

of K (i.e., different values ofγ ). It can be concluded that forK ≤ 1/5 andM ≤ 0.15, the
numerical results from the compressible BGK scheme are nearly indistinguishable from
the solution of the incompressible fluid equations, where the compressible error is indeed
on the order ofM2.

It can be concluded here that the BGK solution properly models the incompressible
equations because the overall divergence of velocity field is found to be very small in all
cases. In fact, the divergence of the velocity field is on the order of 10−7 and remains nearly
constant once steady state is achieved. Figure 5 shows maximum density fluctuation versus
Mach number, the divergence of velocity field versus Mach number, and the divergence
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FIG. 5. Results with Re= 1000. (×) K = 3.0, (+) K = 0.0. (a) Maximum density fluctuation1ρ/ρ vs Mach
number; (b) 107 Div(U) vs Mach number; (c) 108 Div(ρU) vs Mach number.

of momentum versus Mach number. From these plots, it can be seen that the maximum
density fluctuation and divergence of velocity and momentum are very small. Note that we
are mainly concerned with the engineering application of the BGK method to the incom-
pressible flow equations rather than with mathematical properties, such as divergence free
solutions.

4. SIMULATION OF FLOW OVER A BACKWARD FACING STEP

In this section, the BGK scheme is applied to a backward facing step problem. This test
case is chosen mainly because both the numerical and experimental data are available for
the backward facing step problem [9]. In addition, this test case has also been used to study
the lattice BGK method [3]. The geometry of the test case is the following:
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TABLE 8

Geometric Parameters in Three Cases

Case Re h H hs= H − h Umax

1 50 2 3 1 7.23
2 150 2 3 1 21.7
3 150 2 4 2 10.8

Table 8 provides a summary of the three test cases performed in this paper. The numerical
results from these three test cases are compared with experimental results in [9].

In the table, the Reynolds number is defined as Re= (H − h)Umax,entry/ν. According to
the experiment, the viscous coefficient is defined as

ν = [14.5− 0.44∗ (T◦ − 20)]10−2 cm2/s,

whereT◦ is the temperature and is equal to 20 in the experiment. The experimental data
are described by Kueny in [9]. In the present simulation, the computational field is limited
to the region bounded by (−4≤ x/(H − h)≤ 30 and−1≤ y/(H − h)≤ h/(H − h). At the
inlet, the velocity has a parabolic profile and the maximum horizontal velocity component
has the magnitude 1.5. The density and pressure are set to be constant. At the wall, the
no-slip boundary condition for velocity is used. In addition, the conditions for density and
pressure at the wall are

∂ρ

∂n
= 0,

∂p

∂n
= 0.

FIG. 6. Streamline distributions in three cases.
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FIG. 7. Comparison ofU -velocity profile at four different locations. (×) Experimental data [9]; (—) present
calculations.

At the outflow boundary, the free boundary condition inx-direction is used. That is,

∂U

∂x
,
∂V

∂x
,
∂ρ

∂x
,
∂p

∂x
= 0.

The mesh used for cases 1 and 2 in Table 8 is 1202× 152, and that for case 3 is 1202× 102.
Therefore, the grid size is uniform for all three cases, where1x= 0.03 and1y= 0.02.
Also, K = 0,M = 0.15 are used in the current calculations. The numerical results of these
three cases are shown in Figs. 6–8. These figures display (i) the structure of flow fields;
(ii) the velocity profiles atx-locations of 1.5H − h, 4H − h, 8H − h, and 16H − h; (iii) the

TABLE 9

x-Coordinate of Reattachment Points

Case 1 Case 2 Case 3

Exp. [9]: 3 6 4.5
Num.: 3 6.3 4.8
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FIG. 8. Comparison of shear stressτw,top, τw,bottom andUmax/Umac(0) in the three cases. (×) Experimental data
[9]; (—, - - -) present calculations.

distribution of the maximum velocity at different cross sections; and (vi) the shear stress
on top and bottom walls alongx-direction.

Similar to the lattice BGK method, there is a distinct difference in the locations of the
reattachment points in our simulation results from the experimental data. The distance
between the reattachment point and the backface is listed in Table 9. However, the velocity
profile at fixed locations and the shear stress at the top and bottom are very close to the
experimental data.

5. CONCLUSION

The BGK-based scheme is extended to the simulation of low-speed flow in the present
paper. WithK = 0,M ≤ 0.30, the simulation results from compressible BGK code give
an excellent agreement with the results from incompressible codes and experiments. This
good agreement suggests that the proposed compressible BGK method can faithfully model
incompressible flows when the Mach number is small. The main feature of the current ap-
proach that distinguishes it from incompressible codes is that there is no Poisson equation
involved in the current method. In addition, unlike the lattice BGK method [8], the present
scheme is an extension of the compressible BGK code [12] and uses a continuous phase
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space rather than a fixed number of particle velocities. Hence, shocks and other disconti-
nuities can naturally be calculated by these kinds of proposed kinetic schemes. Finally, the
present method can be easily parallelized and extended to three dimensions. The drawback
of the current approach is that the CFL condition is used for the determination of time
step, which can be extremely small for the very small Mach number flow, and the pressure
term could become stiff and generate numerical errors. So, for extremely subsonic flow, the
adaptation of the preconditioning technique, which changes the sound speed numerically,
will be helpful. However, in many engineering applications, it is not necessary to makeM
extremely small. As shown in this paper, the calculations withM = 0.15 give results almost
identical to those from incompressible code. The two test cases in this paper have little
change in the temperature distribution of the flow field. Actually, the largest error in the
application of the compressible code to the incompressible flow simulation is attributable
to the thermal effects. The ideal equation of state used in most compressible code will au-
tomatically generate a large density change if there are significant temperature variations.
This related issue is discussed in [13].

APPENDIX: MOMENTS OF THE MAXWELLIAN DISTRIBUTION FUNCTION

In the gas-kinetic scheme, we need to evaluate moments of the Maxwellian distribu-
tion function with bounded and unbounded integration limits. Here, we list some general
formulas.

First, we assume that the Maxwellian distribution for two dimensional flow is

g = ρ
(
λ

π

)(K+2)/2

e−λ((u−U )2+(v−V)2+ξ2),

whereξ hasK degrees of freedom. Then, by introducing the following notation for the
moments ofg,

ρ〈· · ·〉 =
∫
(· · ·)g du dv dξ,

the general moment formula becomes

〈unvmξ l 〉 = 〈un〉〈vm〉〈ξ l 〉,
wheren,m are integers, andl is an even integer due to the symmetry inξ -space. The
moments of〈ξ l 〉 are

〈ξ2〉 =
(

K

2λ

)
〈ξ4〉 =

(
3K

4λ2
+ K (K − 1)

4λ2

)
.

The values of〈un〉 depend on the integration limits. When the limits are from−∞ to+∞,
we have

〈u0〉 = 1

〈u〉 = U
. . .

〈un+2〉 = U 〈un+1〉 + n+ 1

2λ
〈un〉.
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Similarly,

〈v0〉 = 1

〈v〉 = V
. . .

〈vn+2〉 = V〈vn+1〉 + n+ 1

2λ
〈vn〉.
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