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This paper extends the gas-kinetic BGK-type scheme to low Mach number flows,
and thus shows that incompressible flow solutions are accurately obtained from the
BGK scheme in the low Mach number limit. The influence of boundary conditions,
internal molecular degrees of freeddtm and the flow Mach numbevl on the ac-
curacy of the solutions of incompressible or nearly incompressible flow problems is
quantitatively evaluated. The gas-kinetic scheme is tested carefully in two numer-
ical examples, namely, the cavity flow problem and the flow passing a backward
facing step problem. For the cavity flow problem, the numerical results from the gas-
kinetic scheme under different Reynolds numbers compare well with Ghia’s data.
For the backward step problem, the numerical results are compared accurately with
previously published experimental datag 1999 Academic Press

Key Wordsiow-speed flow; kinetic scheme; incompressible Navier—Stokes equa-
tions.

1. INTRODUCTION

Great progress has been achieved in the field of computational fluid dynamics of inc
pressible flows in the past few decades [4, 7]. Despite this success, there remain two |
challenges in the numerical solutions of incompressible fluid flows. First, the incompre
ible flow assumption eliminates the unsteady term from the continuity equation and redt
the mass conservation equation to a divergence free velocity field. Therefore, the absen
density from the incompressible fluid flow equations decouples the continuity equation fr
the momentum and energy equations. Hence, the divergence free velocity field becc
an implicit condition for solving the momentum and energy equations. The enforcem
of the divergence free velocity field condition requires the solution of Poisson’s equat
for the pressure field. However, for complicated geometry, the Poisson solver is the n
time consuming part in the whole flow calculations. The second challenge in the solutiol
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18 SU, XU, AND GHIDAOUI

incompressible fluid flow equations relates to the proper choice of intermediate bounc
conditions [6]. In fact, Ref. [6] provides excellent insight into the problems associated w
some intermediate boundary conditions and shows which intermediate boundary is opt
for viscous incompressible flows.

Conceptually, it seems plausible that the problems associated with the solution of
Poisson equation and the boundary conditions in incompressible flows can be avoi
by applying compressible flow codes to problems where flow Mach number tends to ze
However, the extention of a compressible code to incompressible limitis not straightforw:
and can be problematic. For example, the large disparity between the speed of acoustic v
andthe speed of convective waves which occurs whenever the flow Mach number approa
zero causes inaccuracy and stability problems for conventional flux-splitting methods 1
are based on the exact or approximate Riemann solvers, such as Roe, van Leer, Oshe
AUSM splitting [10]. In fact, singularities exist in all these flux splitting methods whel
M — 0. This is not surprising given that a proper formulation of a numerical technique f
the compressible flow equations requires an upwinding procedure, thus implying a fir
wave speed (i.eM =£0).

A possible approach to dealing with the problem of singularity encountered when
plying a compressible code to model a small Mach number flow is to redefine the “rep
sentative” sound speadwhen the flow Mach number becomes smaller than a specifie
threshold (e.g., @) [15]. Some approaches are based on discarding the energy equa
for the compressible fluid [5], and the gas is considered as barotropic, such as those
equal temperature. In recent years, the lattice Boltzmann method has been succes:
applied to incompressible, isothermal flows [8]. However, due to the specific discretizat
of particle velocities in the phase space, the lattice Boltzmann method still has difficult
in compressible flow limit and maintaining the correct energy equation [2].

The development of gas-kinetic schemes has attracted much attention in recent y«
These schemes are based on the approximate collisional Boltzmann equation, suc
the BGK model [1]. The resulting numerical models are often referred to as collisior
BGK schemes for the compressible Euler and Navier—Stokes equations [14]. A comp
description of the BGK scheme can be found in a recent lecture note [12]. Unlike upwi
schemes, such as those based on Riemann solvers, the BGK method is basically sc
the viscous equations, where the dissipation is controlled by the particle collision time. T
objective of this paper is to simplify the original BGK method in the smooth flow regio
and extend it to the low Mach number flows.

The paper is organized as follows. In Section 1, the BGK scheme for the low-speed flo
presented. In Section 2, the scheme is applied to the 2D cavity flow calculation and the re:
are compared with Ghia’s data. The agreement between both results is extraordinary.
origin of the errors from the boundary condition, the molecule’s internal degree of freedc
and the Mach numbeM are presented in detail in Section 3. In Section 4, the kineti
scheme is applied to the flow over a backward facing step problem. Numerical exam|
validate the current scheme for the solutions of low-speed flow. The last section provi
the conclusions.

2. BGK SCHEME IN LOW-SPEED LIMIT

The BGK model in two-dimensional case is

— f
ft +fo+l)fy = gT, (1)
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wheref is the real gas distribution function agds the equilibrium state approached by
Both f andg are functions of space y; timet; particle velocityu, v; and internal degrees
of freedomt. The particle collision time is related to viscosity coefficient, which depends
on the local macroscopic flow variables, such as temperature.

The equilibrium statg in the 2D BGK model has the form

A (K+2)/2 2 242
g=p () g MU=V +(0-V)%487] )
b
wherep is density,U andV are the macroscopic velocities xnandy directions, and.
is a function of temperature=m/2kT. & is a vector inK dimensions (not necessarily an
integer) and:? is
E2=(f + &5+ +EK
In D dimensionsK is related to the specific heat ratiothrough the relation [12]
_K+D+2
YZ7K+pD

whereD is the number of dimensions.
The connection between massnomentunpU (= m), pV (= n), and energye densities
and the distribution functiori is

0
W= ps =|m =/wﬁdmh%, «=1234 3)
0
pe pe

wheredé =dé&; dé&, - - - dék, ¥, IS the vector

1 T
Vo = (1, u, v, 2(u2+v2+s2>> : 4)

anddu dv d¢ is the volume element in the phase space. Since mass, momentum, and en
are conserved during particle collisiorfsandg must satisfy the conservation constraint

/@—n%mmmgzq «=1234, (5)

at any point in space and time. The fluxes for the corresponding macroscopic variable
the x-direction are

F(W) = =i/u¢¢fdudvd§ (6)
Fe

From Eq. (1), the compressible Navier—Stokes equations can be derived, where the ¢
stress tensor can be expressed as

aU; aU; dUk K aUg
- et Bt R Wt Sii — | | 7
i g |:(an + aX%; ! 3Xk> + K+2 4 8Xk:| (7)



20 SU, XU, AND GHIDAOUI

where dynamic viscosity coefficient is
n=1p,

and the second viscosity coefficient becomes

K
K+2

¢ = p.
In the above equationg,is the local fluid pressure with the relatign= p/2A. The second
viscosity coefficient is solely related to the internal degree of freedom through the co
pressibility of the fluid, which can be totally eliminated by the choicekof 0, which
corresponds te =2 in the 2D case.

In order to develop a finite volume gas-kinetic scheme, take momenjs of Eq. (1)
and integrate them with respect tw dv d¢ in phase spacelx dyin a numerical cell
[Xi—1/2,j, Xi+1/2,)] X [Wi,j=1/2: ¥i,j+1/2], and timedt in a time step{", "],

/(ft +ufy +vfy)y, dudvdé dx dy dt= / —I/fadu dvdédxdydt

with conditions (3), (5), and (6), we can get

At
Wi Mﬁ-—AS]g;/ Fi-Tidt, ®)

whereAt =t"1 —t", andF is the flux across cell interfaces, which can be obtained fror
the integration of the particle distribution functionS ; is the area of the numerical cell
a, 1) and|Tk| the length of the cell interface with the normal directian

Since the BGK model is solved in the current paper by using a directional spilittil
scheme, in what follows we only present the numerical discretization for the fluxes in 1
x-direction; a similar formula can be found in tlyedirection. In thex-direction, the BGK
model can be reduced to

fpuf,= 91 )
T

For subsonic flow without shocks, the general solutiorf dbr the above equation at the
cell interfacex; +1/> and timet can be simplified as [11]

1/t ,
fmﬂmtmu9=;/ g(X, t',u, v, £)e" /T dr, (10)

wherex’ = x 112 — u(t —t’) is the trajectory of a particle motion. Generally, the equilibrium
stateg around the cell interface 11,2 at the beginning of each time steg- 0 is assumed
to be

g, t,u, v, &) = go(L+ a(x — Xi+1/2) + At), (11)

whereqp is the local Maxwellian located at the cell interface,

2o (K+2)/2 ) s
Oo = ,00(;) @ tolU=Uo)*+(-Vo)*+§7] (12)
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The dependence &, A in Eq. (11) on the particle velocities can be obtained from th
Taylor expansion of a Maxwellian and have the forms of

1
a= a1+a2u+a3v+a4§(uz+ 02+§2) = &V,
1
A= Ap+ A+ Agv + A4§<u2+ V2 + £ = Ay,

where all coefficients ody, ay, ..., A4 are local constants.

For the low-speed flow, at the beginning of each time ste, the values of macroscopic
variables on the cell interfaces and their slopes in the normal direction can be calcul:
from the discretized initial datdj . In the present paper, a third-order accurate interpolatio
scheme is used, and the macroscopic variables at the cell interface and their slope
constructed as

7 1
W12 = TZ(W + W) — TZ(VVifl +Wi,2), (13)

dw 5 1
(dx>i+1/2 = <4(VVi+l - W) — TZ(VVHZ - VVil)>/AX, (14)

whereAx is the cell size. With the above macroscopic distributions, the microscopic ¢
distribution functiong at timet = 0 can be determined:

P

U
/%godu dvdé =Wy = P

PE /) 12

and

/awagodu dvdé = (C;\:(v> .
. i+1/2

The parameters in the Maxwellian distributiagsin Eq. (12) are

P0 p
Uo u
= 15
Vo v (15)
5 (K+2)p
0 Ape—3m?+02)/p) /110

After determininggp in the above equations, we can fiadrom the slopes of macroscopic
variables across a cell interface

Ap a
1 /dw a
— <—> = Am = Ma'g 2| = Maﬁaﬂ, (16)
Y %) dx i+1/2 An as

Ape ay
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where the matridMes =1/p0 | Gove ¥ du dv dé is

1 Uo Vo By
M, s = Uo UG+ 1/2k UoVo Bo )
T Vo UoVo VE+1/20 Bs |’
Bl 82 B?, 84
and
1
Br = 5(Ug + V¢ + (K +2)/2h),
1
Ba = 5 (Ug + VgUo + (K +4)Uo/2%0),
1
Bs = 5 (V5 + UgVo + (K + 4Vo/2%0),
and
1
Ba= 7 ((US+V3)" + (K +4)(U§ +V3) /Ao + (K + 6K +8) /415).

The above matrix can be easily inverted, and the solutiorsifoEq. (16) can be expressed
as

2

= 2Ae — 2UpgAU — 2VhAV
y K+2( € 0 bAV),

Vo
az = 20| AV — — ,
3 0( 2A034>

Uo
a = 2| AU — — ,
2 0( 2A034>

1 1 K+2
a1 = —Ap —Ugap, — Voag — = [ U2 + V2 ,
1 Pop o 093 2(0+ o + 2 )a4

where

AU = (Am — UpAp),
AV = (An — VpAp),

1 K+2
Ae = (A(,oe) - 2(U§+V02+ ZXO) Ap).

After substituting Eq. (11) into Eqg. (10), the final gas distribution function at a ce
interface is

f(Xi1/2,t,U,v,8) = go(1— tua+ (t — 1) A); (18)
the only unknown in the above equationAsSince

g(Xi+1/25 tv u, 5) = gO(1+ At)9
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and with the compatibility condition

/%(f — g dudvdé =0,

along the time and atx = x;+1/2, A can be uniquely determined from

/(ua+ A)Y,godudvdé =0,

which gives

1
Mo Ay = = /uaggwadu v de. (29)

where My is given in Eq. (17), and the right-hand side in the above equation is know
Therefore, the above equation can be solved to obfair= (A, Ao, Az, AT as that
solving Eq. (16). The integrating moments of Maxwellian distribution can be found
the Appendix.

Finally, the time-dependent numerical fluxes in #idirection across the cell interface
can be computed as

F, 1

Fm u

e = [u v go(l+rau+ (t —1)Adudvdé. (20)
n 14042 2 2

Foe s(US+v°+&9)

i+1/2

By integrating the above equation to the whole time siépwe get the total mass, mo-
mentum, and energy transport. Again, the moments of a Maxwellian can be found in
Appendix. The collision time in the above flux functions is related to the viscosity coef
ficientv through the relation

P
-

For any physical problem, with given Reynolds number Re,

UL UL
Reziz p7
v P

we can have

2L
~ Re’

wherea takes the valug in Eq. (15) and the relatiop = p/2) has been used.

Remark. The time stepAt used in the above scheme is based on the CFL condition a
the CFL number taken is around 0.65. For any practical simulations, the ratio benteer
and the particle collision time is aboutAt/z ~ 10-100. Mathematically the scheme can
be used in the limit oAt/ ~ 1. However, physically the limitt ~ ¢ implies rarefied gas
flow, and the assumption of Maxwellian and the expansion of Maxwellian in the curre
scheme are not valid.
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3. SIMULATION OF CAVITY FLOW

In this section, the 2-D viscous flow in a cavity is simulated. In this problem, the fluid
bounded by a square and is driven by a uniform translation of the top. The cavity case sh
rich vortex phenomena at many scales depending on the Reynolds number Re, and
are abundant papers in the literature to study the flow configuration. The cavity probl
is an ideal test case for numerical methods devised to solve the Navier—Stokes equa
because the solution of this problem displays a well-studied flow pattern.

The lack of an exact solution to the cavity flow problem means that an existing accurate
comprehensive numerical solution for this problem can be used as a benchmark to eva
the results obtained by the proposed BGK method. Ghial [7] obtained numerical
solutions up to Re= 10,000 with 257 257 grid points by using a vorticity-stream function
formulation. To date, this work is probably the most comprehensive study of the cavity flc
Therefore, the simulation results of the cavity problem by the BGK model are compal
to Ghia’'s data. The effects of the compressibility, boundary conditions, Mach nuvhber
internal degree of freedor{, Reynolds number Re, and grid size on the results of th
BGK scheme are tested and analyzed in this section. In addition, the optimum choice
the parameter, K, and Re are suggested and physical explanations for this choice
provided.

3.1. Description of the Numerical Results

In the present simulation, Cartesian coordinates are used. The top boundary moves
left to right with velocityU . A uniform mesh of 128 128 cells is used for the calculation for
Re=100, 400, 1000, 2000, 3200, and 5000, and a mesh ok2B# is used for Re- 7500
and 10,000, respectively. The Reynolds number is defined aslRe/v, wherelL is length
of cavity side which is equal to 1 in this case anis kinematic viscosity =7/p.

In the present computation, the velocity fieldtat O (i.e., initial condition) is zero
everywhere inside the cavity. To check the convergence of the BGK solution to ste:
state, the velocity fields at different output timteare compared. It is found that there is
little differences between the results at 30 andt =40 when Re< 5000. However, as the
Reynolds number is increased beyond 5000 (i.e > B800) the simulation timerequired
for convergence is more than 50. The computation indicates that the increaséloRe
is rapid. When Re> 5000 and with a mesh of 128128 cells, the convergence to steady
state is either slow or simply not achievable. To resolve this problem, a smaller mesh
is required. For instance, the computation shows that by increasing the number of cel
256 x 256, convergence to steady state is achieved for ait R@,000. To test the influence
ofthe cell size on the accuracy of the converged solution, the results obtained witH P33
and 256x 256 are compared for Re1000,K =0, andM = 0.15. This comparison shows
little difference in this case (see Tables 2 and 3).

To obtain vorticities from the solution of velocity field at output time, a standard secon
order central difference scheme is used to discretize the expression

8V U

w = .
X ay

Then, the stream function is obtained by solving Poisson’s equation

AY = —o.
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FIG.1. Streamlines forthe calculations with=0, M = 0.15, and (a) Re= 100; (b) Re= 400; (c) Re= 1000;
(d) Re=2000; (e) Re=3200; (f) Re=5000; (g) Re= 7500; (h) Re= 10,000.

The results forK =0 andM =0.15 are shown in Figures 1, 2, 3, and in the Tables
Figure 1 shows streamlines for different Reynolds numbers. It is apparent that the f
structure is in good agreement with that of Ghia. The effect of the Reynolds number
the flow pattern and the structure of the steady recirculating eddies in the cavity are cle
observed. Figure 2 shows the vorticity distribution inside the cavity. It is obvious that t
scale of the central main vortex increases with the Reynolds number; at the same time
magnitude of the vorticity in the central region becomes larger. In Table 1, the locations
the vortex center are listed and compared with Ghia’s simulation results. The relative e
between the two solutions is less than 5%. The horizontal and vertical components of
U andV velocities along their respective center line are displayed in Fig. 3 for differe
values of Reynolds number, where the circles represent Ghia’s data and the solid line:
the results obtained from the current scheme. Tables 4 and 5 list the detailed numerical
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TABLE 1
Locations of Vortex Center under Different Re Number, Where
M =0.15 andK =0 Are Used in the Simulation

Re: 100 400 1,000 2,000 3200 5000 7,500 10,000
x (Ghia's): 062 056 054 —  — 052 051 051

X (present): 062 056 054 053 052 052 052 051
y(Ghias): 073 061 056 —  — 054 054 051

y (present): 074 062 057 057 055 054 053 052

o o = R g ]
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FIG. 2. \Vorticity distributions for the calculations witKk =0, M =0.15, and (a) Re- 100; (b) Re=400;
(c) Re=1000; (d) Re=2000; (e) Re=3200; (f) Re=5000; (g) Re=7500; (h) Re=10,000.
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w along vertical center lire, v along horizonal center fine

U along vertical center line. v aiong noriznal center line
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FIG.3. U (left)andV (right) velocity distributions along vertical and horizontal lines for the calculations witf
K =0, M =0.15, and (a) Re=100; (b) Re=400; (c) Re=1000; (d) Re=2000; (e) Re=3200; (f) Re=5000;
(g) Re=7500; (h) Re=10,000. ) Ghia’s data; (—) BGK results.
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TABLE 2
Distribution of U-Velocity along Vertical Central Line
with Re = 1000,M = 0.15,K =0

y Ghia’s U (128x 128) U (258x 258)
0.00000 0.00000 0.00000 0.00000
0.05469 —0.18109 —0.17707 —0.18111
0.06250 —0.20196 —0.19798 —0.20220
0.07031 —0.22220 —0.21849 —0.22279
0.10156 —0.29730 —0.29583 —0.30026
0.17188 —0.38289 —0.38469 —0.38755
0.28125 —0.27805 —0.27824 —0.27920
0.45313 —0.10648 —0.10709 —0.10742
0.50000 —0.06080 —0.06142 —0.06150
0.61719 0.05702 0.05657 0.05706
0.73438 0.18719 0.18684 0.18809
0.85156 0.33304 0.33331 0.33591
0.95313 0.46604 0.46751 0.47056
0.96094 0.51117 0.51237 0.51528
0.96875 0.57492 0.57579 0.57855
0.97656 0.65928 0.65963 0.66252
1.00000 1.00000 1.00000 1.00000

TABLE 3

Distribution of V-Velocity along Horizontal Central Line
with Re=1000,M =0.15,K =0

X Ghia’s V (128x 128) V (258x 258)
0.0000 0.00000 0.00000 0.00000
0.0625 0.27485 0.27679 0.27980
0.0703 0.29012 0.29221 0.29532
0.0781 0.30353 0.30572 0.30896
0.0938 0.32627 0.32872 0.33202
0.1563 0.37095 0.37238 0.37555
0.2266 0.33075 0.32986 0.33235
0.2344 0.32235 0.32136 0.32374
0.5000 0.02526 0.02470 0.02527
0.8047 —0.31966 —0.31876 —0.31977
0.8594 —0.42665 —0.42620 —0.42653
0.9063 —0.51550 —0.51846 —0.52447
0.9453 —0.39188 —0.39433 —0.40618
0.9531 —0.33714 —0.33916 —0.35108
0.9609 —0.27669 —0.27879 —0.28961
0.9688 —0.21388 —0.21512 —0.22423

1.0000 0.00000 0.00000 0.00000
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TABLE 4
Distribution of U-Velocity along Vertical Central Line with M =0.15 K=0
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Re=100 Re=400 Re=1,000
Re=2,000
y Ghias Present Ghias Present Ghias Present Present
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0547 —0.0372 —0.0373 —0.0819 —0.0813 —0.1811 -0.1771 —0.2712
0.0625 —0.0419 —0.0420 —0.0927 —0.0921 —0.2020 —0.1980 —0.2982
0.0703 —0.0477 —0.0467 —0.1034 —0.1028 —0.2222 —0.2185 —0.3232
0.1016 —0.0643 —0.0645 —0.1461 —0.1456 —0.2973 —0.2958 —0.3914
0.1719 —0.1015 —0.1020 —0.2430 —0.2432 —0.3829 —0.3847 —0.3530
0.2812 —0.1566 —0.1580 —0.3273 —0.3275 —0.2781 —0.2782 —0.2384
0.4531 —0.2109 —0.2131 —0.1712 —0.1705 —0.1065 —0.1071 —0.0834
0.5000 —0.2058 —0.2077 —0.1148 —0.1143 —0.0608 —0.0614 —0.0414
0.6172 —0.1364 —0.1367 0.0214 0.0216 0.0570 0.0566 0.0668
0.7344 0.0033 0.0053 0.1626 0.1625 0.1872 0.1868 0.1862
0.8516 0.2315 0.2349 0.2909 0.2905 0.3330 0.3333 0.3300
0.9531 0.6872 0.6896 0.5589 0.5591 0.4660 0.4675 0.4303
0.9609 0.7372 0.7392 0.6176 0.6176 0.5112 0.5124 0.4504
0.9688 0.7887 0.7903 0.6844 0.6844 0.5749 0.5758 0.4914
0.9766 0.8412 0.8424 0.7584 0.7582 0.6593 0.6596 0.5647
Re=3,200 Re=5,000 Re=7,500 Re=10,000
y Ghias Present Ghias Present Ghias Present Ghias Prese
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00C
0.0547 —-0.3241 -0.3390 -0.4117 -0.4089 —-0.4315 —0.4336 —0.4274 —0.4539
0.0625 —0.3534 —-0.3692 —0.4290 -0.4270 —-0.4359 —0.4343 —-0.4254 —-0.4617
0.0703 —-0.3783 —0.3923 —0.4364 —0.4348 —-0.4302 -0.4271 -0.4166 —0.4502
0.1016 —0.4193 -0.4174 —-0.4044 —-0.4014 -0.3832 —-0.3794 —-0.3800 —0.3778
0.1719 —-0.3432 -0.3392 -0.3305 —-0.3135 —-0.3239 -0.3198 -0.3271 —0.2942
0.2812 —-0.2443 -0.2357 -0.2286 —0.2065 —0.2318 -—0.2189 —0.2319 —0.1834
0.4531 -0.0664 —-0.0711 —-0.0740 —-0.0620 -0.0750 —0.0634 —0.0754 —0.0543
0.5000 —0.0427 -0.0273 —0.0304 —-0.0260 —-0.0380 —0.0254 —0.0311 -0.0211
0.6172 0.0716 0.0800 0.0818 0.0670 0.0834 0.0719 0.0834 0.06E
0.7344 0.1979 0.1920 0.2009 0.1768 0.2059 0.1924 0.2067 0.162
0.8516 0.3468 0.3277 0.3356 0.3189 0.3423 0.3378 0.3464 0.304
0.9531 0.4610 0.4385 0.4604 0.4560 0.4717 0.4698 0.4780 0.46¢
0.9609 0.4655 0.4437 0.4599 0.4600 0.4732 0.4711 0.4807 0.47¢
0.9688 0.4830 0.4614 0.4612 0.4614 0.4705 0.4708 0.4778 0.472
0.9766 0.5324 0.5110 0.4822 0.4819 0.4724 0.4734 0.4722 0.472
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00C

for U andV velocities. According to Tables 4 and 5, the relative difference in the pe:
velocity between the BGK solution and Ghia'’s results is less than 5%.

3.2. Effect of Boundary Condition

Correct simulation of low-speed flow requires the implementation of appropriate bou
ary conditions. For incompressible Navier—Stokes equations, the energy equation is de
pled from continuity and momentum equations. In this case, the adherent condition (no
is used for the velocity boundary condition. Then, for pressure, Poisson’s equation with



30

SU, XU, AND GHIDAOUI

TABLE 5
Distribution of V-Velocity along Horizontal Central Line with K=0, M =0.15

Re=100 Re=400 Re=1,000
Re=2,000
X Ghias Present Ghias Present Ghias Present Present
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0625 0.0923 0.0932 0.1836 0.1830 0.2749 0.2768 0.3332
0.0703 0.1009 0.1019 0.1971 0.1965 0.2901 0.2922 0.3487
0.0781 0.1089 0.1100 0.2092 0.2086 0.3035 0.3057 0.3620
0.0938 0.1232 0.1244 0.2297 0.2291 0.3263 0.3286 0.3819
0.1563 0.1608 0.1625 0.2812 0.2810 0.3710 0.3724 0.3741
0.2266 0.1751 0.1773 0.3020 0.3018 0.3307 0.3300 0.2926
0.2344 0.1753 0.1775 0.3017 0.3015 0.3223 0.3214 0.2838
0.5000 0.0545 0.0561 0.0519 0.0513 0.0253 0.0247 0.0166
0.8047 —0.2453 —0.2517 —0.3860 —0.3861 —0.3197 —0.3188 —0.3011
0.8594 —0.2245 —0.2309 —0.4499 —0.4501 —0.4266 —0.4262 —0.3653
0.9063 —0.1691 —0.1743 —0.3383 —-0.3821 —0.5155 —0.5185 —0.4768
0.9453 —0.1031 —0.1065 —0.2285 —0.2278 —0.3919 —0.3943 —0.5059
0.9531 —0.0886 —0.0915 —0.1925 —0.1918 —0.3371 —0.3392 —0.4620
0.9609 —0.0739 —0.0764 —0.1566 —0.1561 -0.2767 —0.2788 —0.3966
0.9688 —0.0591 —0.0609 —0.1215 —0.1207 —0.2139 —0.2151 —0.3137
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Re=3,200 Re=5,000 Re=7,500 Re=10,000
X Ghias Present Ghias Present Ghias Present Ghias Prese
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00C
0.0625 0.3956 0.3810 0.4245 0.4221 0.4398 0.4402 0.4398 0.43€
0.0703 0.4092 0.3951 0.4333 0.4316 0.4403 0.4427 0.4373 0.441
0.0781 0.4191 0.4055 0.4365 0.4353 0.4356 0.4379 0.4312 0.437
0.0938 0.4277 0.4155 0.4295 0.4278 0.4182 0.4169 0.4149 0.41€
0.1563 0.3712 0.3640 0.3537 0.3449 0.3506 0.3327 0.3507 0.327
0.2266 0.2903 0.2871 0.2807 0.2616 0.2812 0.2627 0.2800 0.241
0.2344 0.2819 0.2791 0.2728 0.2529 0.2735 0.2554 0.2722 0.232
0.5000 0.0100 0.0083 0.0094 0.0068 0.0082 0.0136 0.0083 0.00¢€
0.8047 —-0.3118 —-0.3003 —0.3002 —-0.2807 —0.3045 —-0.2869 —0.3072 —0.2649
0.8594 -0.3740 -0.3615 -0.3621 -0.3512 —-0.3621 —-0.3454 -0.3674 —0.3351
0.9063 —-0.4431 -0.4318 -0.4144 -0.4117 -0.4105 -0.4013 -0.4150 -0.3974
0.9453 —-0.5405 —-0.5369 —-0.5288 —0.5320 —-0.4859 —-0.4850 —0.4586 —0.4515
0.9531 -0.5236 —-0.5220 -0.5541 —-0.5571 —-0.5235 —-0.5245 —-0.4910 -0.4897
0.9609 —-0.4742 -0.4747 -0.5507 —-0.5520 —-0.5522 —-0.5544 —-0.5299 -0.5336
0.9688 —0.3902 —0.3906 —0.4977 —0.4956 —0.5386 —0.5436 —0.5430 -0.5512
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00C
following boundary condition is usually solved,
ap 8%V,
an_ on2’ (1)

wheren is the normal direction. For higher Reynolds numbers, the term on the right-ha
side in the above equation can be ignored.

For the BGK scheme, the compressible flow equations are solved. Therefore, it is ne
sary to impose boundary conditions on velocity, density, and either pressure or tempera
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FIG. 4. Results ofU andV velocities along vertical and horizontal lines by using isothermal and adiabat
boundary conditions.X) Ghia’s data; (—dT/dn=0; (- - -) T = constant.

In the calculations, we use
ap
o=
for the density and adherence condition for the velocities at the wall. In addition, the f
lowing two temperature boundary conditions are tested in this paper:

01

oT
isothermal:T = constant and adiabati%:—n =0.

Figure 4 plots the center line velocity distributions obtained from the BGK scheme by us
the isothermal and adiabatic boundary conditions, and compared with Ghia’s data. Itis
that the results of the isothermal boundary condition are slightly different from the rest
of the adiabatic boundary condition. The difference in the results can be explained fr
an energy transfer point of view. Assuming that temperature is constant at the wall,

BGK solution converges to a flow field whose steady-state temperature solution is cons
everywhere in the flow domain. Yet, the viscous shear stresses continue to generate hea
when the flow reaches steady state. Hence, when the flow reaches its steady-state so
under the isothermal condition, all the heat generated by viscous forces is transferrec
through the wall and the internal energy becomes constant. However, under the adial
boundary condition, the heat generated in the process of reaching steady state by the vit
forces in the upper surface is stored internally by the fluid. Hence, the temperature inside
cavity in the adiabatic case is higher than that in the isothermal case. As a result, the s
speed is higher in the formal case and it is equivalently more close to the incompress
case. Therefore, itis not surprising that the adiabatic boundary condition gives better res

3.3. Effect of Compressibility

Incompressible flow is the limit case of the compressible flow when the Mach numt
M tends to zero. In the following, the effect of compressibility on the simulation resul
with K = 0 and under different Mach numbers is investigated. The BGK results for differe
Mach numbers and Ghia’s data are compared in Table 6. From this table, itis obvious tha
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TABLE 6
Comparison between Present Results (with Differenid Number) and Ghia’s Data

Distribution ofU -velocity alone vertical central line

Y M=030 M=025 M=020 M=015 M=010 M=005 Ghia
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
00547 —0.1788 —0.1784 —0.1779 -0.1771 -0.1767 —0.1747 —0.1811
00625 —0.1999  —0.1994 —0.1989 —0.1980 -0.1975 —0.1962  —0.2020
00703 —0.2204 —02199 —02194 —02185 —02180 —02176 —0.2222
01016 —0.2972 —0.2969 —0.2965 —0.2958 —0.2957 —0.2968  —0.2973
01719 03834 -0.3840 -0.3844 -0.3847 -0.3849 —0.3828 —0.3829
02812 —02759 —0.2768 —02776 —02782 —0.2786 —0.2779 —0.2781
04531 —0.1058 —0.1063 —0.1067 —0.1071 —0.1076  —0.1058  —0.1065
05000 —0.0605 —0.0608 —0.0611 —0.0614 —0.0618 —0.0611  —0.0608
0.6172 0.0564 0.0565 0.0565 0.0566 0.0565 0.0560 0.0570
0.7344 0.1857 0.1862 0.1866 0.1868 0.1872 0.1871 0.1872
0.8516 0.3316 0.3324 0.3329 0.3333 0.3338 0.3329 0.3330
0.9531 0.4660 0.4668 0.4674 0.4675 0.4679 0.4705 0.4660
0.9609 0.5109 05116 05123 05124 0.5128 0.5150 05112
0.9688 0.5743 0.5750 0.5757 0.5758 0.5763 0.5785 0.5749
0.9766 0.6582 0.6589 0.6595 0.6596 0.6600 0.6623 0.6593
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Distribution of V-velocity along horizontal central line

X M =0.30 M =0.25 M =0.20 M =0.15 M =0.10 M =0.05 Ghia
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0625 0.2763 0.2766 0.2768 0.2768 0.2794 0.2794 0.2749
0.0703 0.2918 0.2920 0.2922 0.2922 0.2948 0.2948 0.2901
0.0781 0.3053 0.3055 0.3057 0.3057 0.3086 0.3086 0.3035
0.0938 0.3282 0.3285 0.3287 0.3287 0.3323 0.3323 0.3263
0.1563 0.3711 0.3717 0.3722 0.3724 0.3738 0.3738 0.3710
0.2266 0.3279 0.3288 0.3295 0.3299 0.3290 0.3290 0.3307
0.2344 0.3193 0.3202 0.3209 0.3214 0.3209 0.3209 0.3223
0.5000 0.0243 0.0245 0.0246 0.0247 0.0226 0.0226 0.0253
0.8047 —0.3170 —-0.3177 —0.3183 —0.3188 —0.3168 —0.3168 —0.3197
0.8594 —0.4245 —0.4252 —0.4258 —0.4262 —0.4249 —0.4249 —0.4266
0.9063 —0.5182 —0.5184 —0.5186 —0.5185 —0.5164 —0.5164 —0.5155
0.9453 —0.3972 —0.3966 —0.3957 —0.3943 —0.3909 —0.3909 —0.3919
0.9531 —0.3421 —0.3415 —0.3406 —0.3392 —0.3351 —0.3351 —0.3371
0.9609 —0.2816 —0.2810 —0.2801 —0.2788 —0.2736 —0.2736 —0.2767
0.9688 —0.2175 —0.2170 —0.2163 —0.2151 —0.2094 —0.2094 —0.2139
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BGK solution uniformly approaches Ghia’s solutiorMs— 0. WhenM = 0.15, the relative
difference in the peak velocity between the BGK solution and Ghia’s results is less than :
In the BGK scheme, another parameter that can influence the simulation results is
value of internal degree freedaik Theoretically, if the fliud is incompressible the internal
degree of freedom should take= 0 because there is no energy exchange between exter
and internal molecular motion. Hence, the proper choice for the paraitéatezero (i.e.,
K =0), which corresponds tp = 2 and the coefficient of second viscosity becomes zerc
AlthoughK =0 is the proper theoretical value, it is interesting to investigate the sensitivi
of the BGK solution to this parameter. Table 7 lists the simulation results for different valu
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TABLE 7

33

Comparison between Present Results with DifferenK and Ghia’s Data

Distribution ofU -velocity along vertical central line

Y K=2/5 K=2/7 K=1/5 K=1/7 K =1/10 K=0 Ghia
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000C
0.0547 -0.1717 —0.1772 -0.1771 -0.1771 -0.1771 -0.1771 —0.1811
0.0625 —0.1901 —0.1975 —0.1977 —0.1977 —0.1978 —0.1980 —0.2020
0.0703 —0.2076 —-0.2173 —0.2176 —-0.2178 —0.2181 —0.2185 —0.2222
0.1016 -0.2711 —0.2913 —0.2925 —0.2935 —0.2941 —0.2958 —0.2973
0.1719 —0.3472 —0.3769 —0.3790 —0.3805 —0.3817 —0.3847 —0.3829
0.2812 —0.2551 —0.2727 —0.2741 —0.2752 —0.2761 —0.2782 —0.2781
0.4531 —0.0938 —0.1039 —0.1047 —0.1054 —0.1059 —0.1071 —0.1065
0.5000 —0.0540 —0.0596 —0.0601 —0.0604 —0.0607 —0.0614 —0.0608
0.6172 0.0489 0.0548 0.0553 0.0556 0.0559 0.0566 0.057C
0.7344 0.1655 0.1820 0.1832 0.1841 0.1850 0.1868 0.1872
0.8516 0.2955 0.3252 0.3273 0.3288 0.3302 0.3333 0.333C
0.9531 0.4332 0.4606 0.4625 0.4638 0.4649 0.4675 0.466C
0.9609 0.4840 0.5064 0.5080 0.5092 0.5101 0.5124 0.5112
0.9688 0.5523 0.5708 0.5721 0.5731 0.5739 0.5758 0.574¢
0.9766 0.6392 0.6557 0.6568 0.6575 0.6582 0.6596 0.6593
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000C

Distribution of V -velocity along horizontal central line

X K=2/5 K =2/7 K=1/5 K=1/7 K =1/10 K=0 Ghia
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000C
0.0625 0.2683 0.2703 0.2721 0.2734 0.2743 0.2768 0.274¢
0.0703 0.2832 0.2854 0.2872 0.2886 0.2896 0.2922 0.2901
0.0781 0.2962 0.2986 0.3005 0.3020 0.3031 0.3057 0.303E
0.0938 0.3184 0.3209 0.3230 0.3245 0.3257 0.3286 0.3263
0.1563 0.3616 0.3642 0.3664 0.3680 0.3693 0.3724 0.371C
0.2266 0.3232 0.3248 0.3261 0.3271 0.3280 0.3300 0.3307
0.2344 0.3150 0.3166 0.3177 0.3186 0.3195 0.3214 0.3223
0.5000 0.0251 0.0250 0.0249 0.0248 0.0248 0.0247 0.0253
0.8047 —0.3099 —0.3121 —0.3138 —0.3151 —0.3162 —0.3188 —0.3197
0.8594 —0.4193 —-0.4211 —0.4224 —0.4234 —0.4243 —0.4262 —0.4266
0.9063 —0.5106 —0.5126 —0.5141 —0.5152 —0.5162 —0.5185 —0.5155
0.9453 —0.3878 —0.3894 —0.3906 —0.3916 —0.3925 —0.3943 —0.3919
0.9531 —0.3338 —0.3350 —0.3361 —0.3369 —0.3376 —0.3392 —0.3371
0.9609 —0.2746 —0.2756 —0.2764 —0.2770 —0.2776 —0.2788 —0.2767
0.9688 -0.2121 —0.2128 —0.2134 —0.2138 —0.2143 —0.2151 —0.2139
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000C

of K (i.e., different values of). It can be concluded that fd¢ <1/5 andM < 0.15, the
numerical results from the compressible BGK scheme are nearly indistinguishable fr
the solution of the incompressible fluid equations, where the compressible error is ind
on the order oM?2.
It can be concluded here that the BGK solution properly models the incompressi
equations because the overall divergence of velocity field is found to be very small in
cases. In fact, the divergence of the velocity field is on the orderof 46d remains nearly
constant once steady state is achieved. Figure 5 shows maximum density fluctuation ve
Mach number, the divergence of velocity field versus Mach number, and the diverge
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FIG.5. Results with Re=1000Q (x) K =3.0, (+) K =0.0. (a) Maximum density fluctuationp/p vs Mach
number; (b) 10 Div(U) vs Mach number; (c) FDiv(pU) vs Mach number.

of momentum versus Mach number. From these plots, it can be seen that the maxir
density fluctuation and divergence of velocity and momentum are very small. Note that
are mainly concerned with the engineering application of the BGK method to the inco
pressible flow equations rather than with mathematical properties, such as divergence
solutions.

4. SIMULATION OF FLOW OVER A BACKWARD FACING STEP

In this section, the BGK scheme is applied to a backward facing step problem. This
case is chosen mainly because both the numerical and experimental data are availab
the backward facing step problem [9]. In addition, this test case has also been used to s
the lattice BGK method [3]. The geometry of the test case is the following:

L
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TABLE 8
Geometric Parameters in Three Cases
Case Re h H hy=H —h Unax
1 50 2 3 1 7.23
2 150 2 3 1 21.7
3 150 2 4 2 10.8

Table 8 provides a summary of the three test cases performed in this paper. The nume
results from these three test cases are compared with experimental results in [9].

In the table, the Reynolds number is defined as-Rél — h)Umayentry/v. According to
the experiment, the viscous coefficient is defined as

v =[14.5— 0.44 % (T° — 20)]1072 cné/s,

whereT° is the temperature and is equal to 20 in the experiment. The experimental c
are described by Kueny in [9]. In the present simulation, the computational field is limit
to the region bounded by4 <x/(H —h) <30and-1<y/(H —h) <h/(H — h). Atthe

inlet, the velocity has a parabolic profile and the maximum horizontal velocity compone
has the magnitude 1.5. The density and pressure are set to be constant. At the wall

no-slip boundary condition for velocity is used. In addition, the conditions for density al
pressure at the wall are

0
_'0:0, @zo
an an

Case(1)

=

-4 -2 0 2 4 6 8 10

Case(2)

-4 -2 0 2 4 6 8 10
Case(3)
1 T T T T
0 ¥
. | - 1
-4 -2 0 2 4 6 8 10

FIG. 6. Streamline distributions in three cases.
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FIG. 7. Comparison ofJ-velocity profile at four different locationsx() Experimental data [9]; (—) present
calculations.

At the outflow boundary, the free boundary conditiorxidirection is used. That is,

U aVv dp ap

ax’ ox T ax’ax
The mesh used for cases 1 and 2 in Table 8 is 22032, and that for case 3 is 12682102.
Therefore, the grid size is uniform for all three cases, whtxe=0.03 andAy = 0.02.
Also, K =0, M =0.15 are used in the current calculations. The numerical results of the
three cases are shown in Figs. 6—8. These figures display (i) the structure of flow fie
(ii) the velocity profiles ak-locations of 15H — h, 4H — h, 8H — h, and 164 — h; (iii) the

TABLE 9
x-Coordinate of Reattachment Points

Case 1 Case 2 Case 3

Exp. [9]: 3 6 4.5
Num.: 3 6.3 4.8
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FIG.8. Comparison of shear stregsop, Tu,pottom @NAUmax/ Umac(0) in the three casesx( Experimental data
[9]; (—, - - -) present calculations.

distribution of the maximum velocity at different cross sections; and (vi) the shear stri
on top and bottom walls alongdirection.

Similar to the lattice BGK method, there is a distinct difference in the locations of tt
reattachment points in our simulation results from the experimental data. The dista
between the reattachment point and the backface is listed in Table 9. However, the velc
profile at fixed locations and the shear stress at the top and bottom are very close tc
experimental data.

5. CONCLUSION

The BGK-based scheme is extended to the simulation of low-speed flow in the pres
paper. WithK =0, M < 0.30, the simulation results from compressible BGK code give
an excellent agreement with the results from incompressible codes and experiments.
good agreement suggests that the proposed compressible BGK method can faithfully m
incompressible flows when the Mach number is small. The main feature of the current
proach that distinguishes it from incompressible codes is that there is no Poisson equi
involved in the current method. In addition, unlike the lattice BGK method [8], the prese
scheme is an extension of the compressible BGK code [12] and uses a continuous p
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space rather than a fixed number of particle velocities. Hence, shocks and other disc
nuities can naturally be calculated by these kinds of proposed kinetic schemes. Finally
present method can be easily parallelized and extended to three dimensions. The draw
of the current approach is that the CFL condition is used for the determination of tir
step, which can be extremely small for the very small Mach number flow, and the press
term could become stiff and generate numerical errors. So, for extremely subsonic flow,
adaptation of the preconditioning technique, which changes the sound speed numeric
will be helpful. However, in many engineering applications, it is not necessary to Make
extremely small. As shown in this paper, the calculations Witk 0.15 give results almost
identical to those from incompressible code. The two test cases in this paper have |
change in the temperature distribution of the flow field. Actually, the largest error in t
application of the compressible code to the incompressible flow simulation is attributa
to the thermal effects. The ideal equation of state used in most compressible code will
tomatically generate a large density change if there are significant temperature variati
This related issue is discussed in [13].

APPENDIX: MOMENTS OF THE MAXWELLIAN DISTRIBUTION FUNCTION

In the gas-kinetic scheme, we need to evaluate moments of the Maxwellian distri
tion function with bounded and unbounded integration limits. Here, we list some gene
formulas.

First, we assume that the Maxwellian distribution for two dimensional flow is

2 (K+2)/2
g=p= e MU=U)+@=V)*+£?)
- )
where& hasK degrees of freedom. Then, by introducing the following notation for th
moments ofy,

p(-) = /(-”)gdUdvdf,
the general moment formula becomes
(UhomE) = (UM (ME'),

wheren, m are integers, antlis an even integer due to the symmetryéispace. The

moments ofi¢') are
o _ (K
(&%) = (ZA)
o (3K KEK-D
<s>—<4)k2+74k2 )

The values ofu") depend on the integration limits. When the limits are fremo to +oo0,
we have
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Similarly,
W) =1
(v) =V
(vn+2> — V< n+l) + m(vn>
2 '
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